
mishgan пишет:По поводу фазовых, надо понимать, что это все го лишь модель, которая неплохо описывает реальность. Реальности никто не знает)), но врядли в каждой поре идет такой вот плавный доотмыв нефти, как по фазовым проницаемостям. У меня в голове другая модельная картинка этого процесса. Полно поровых каналов разной проводимости. При вытеснении нефти водой в каждом поровом канале происходит Поршневое вытеснение, но в связи с разной проводимостью каналов содержание воды в продукции растет плавно. Это поведение динамики роста содержания воды в продукции неплохо описывается моделью фазовых проницаемостей. Но при обводненности 90-95-100% (зависит от повижностей) модель фазовых дает слишком долгий доотмыв (хвосты обводненности 95-98% тянутся годами, десятилетиями, столетиями... Бред, но те кто занимается проектированием, часто сталкиваются с этим. В реальности я не видел такого поведения обводненности на факте. А при высокой вязкости рост обводненности стремительный, и до 100% доходит быстро и логично, что не подтверждается моделью фазовых проницаемостей.
Вобще это тема отдельной дискуссии, и вопросы эти немного на форуме затрагивались. Только я попросил бы отдельных товарищей меня правильно понимать. Я ни в коем случае не говорю, что модели дерьмо (хотя, по большому счету, это недалеко от истины)). Я всего лишь говорю, что есть диапазон, в котором их более-менее корректно применять. Диапазон больших обводненностей туда не входит.
Решил выделить в отдельную тему.
Мне приходится иметь дело с моделированием месторождений повышенной и высокой вязкости (этак 10-120). Хвосты пологой обводненности тянутся и тянутся

Интересны мысли mishgan'а и всех желающих по этому поводу.
Собирал материал на предмет модификации ОФП. Что-то читал, что-то не понял, что-то не читал. Единственное понял, что именно на ОФП в современных гидродинамических моделях ложится учет основных влияющих факторов (учет неоднородности, что-то еще; но по сути своей именно модификация ОФП должна давать разумный с точки зрения разработки результат). Ясно что лабораторно определенные и модифицированные не имеют ничего общего (Разное разрешение и разный объем упрощений описываемых моделью ОФП). Я даже вполне допускаю что лабораторные не особо и нужны. Но вот каким образом научно (или околонаучно) обоснованным путем модифицировать ОФП? Ведь даже система разработки(на мой взгляд) влияет на используемые ОФП.
Модификация фазовых проницаемостей - это не миф!
Для этого есть стройная теория (например, Kyte&Berry) и даже софт (например, PSEUDO от SLB). Это еще называется двухстадийный апскейлинг, когда вы от керновых фазовых переходите к фазовым полномасштабной модели. По-моему, этот вопрос уже обсуждался на форуме.
Как и везде здесь есть подводные камни и к сожалению, я еще не разу не видел грамотного использования этой теории в нашей реальности... Кстати, изменение формы фазовых в процессе "мануальной" адаптации модели отдаленно напоминает результат их математической модификации, просто никто у нас этому не придает научного обоснования.
Единственное, что видел более менее обоснованное это псевдо фазовые, которые можно получить из анализа fractional flow, например по блокам разработки. Они и учитывают характер роста обводненности, который вы упоминаете.
Если это в тему, то давайте продолжим. Поделюсь ссылками на литературу, с которой знакомился в рамках этой темы. Также есть небольшой опыт самостоятельной работы по теме.
Заталкивать 1D фазовые, полученные по анализу кривой фракционного потока, в 3D модель тоже неграмотно.
А изменение формы фазовых в процессе "немануальной" (например, автоматизированной) адаптации будет
настолько грамотным, насколько грамотный инженер, машина ничего не добавит в этом смысле.
Проблема в том, что "шкала грамотности" у каждого своя и доводы одного не будут убедительны другому...
Кривые ОФП будут принимать форму, которая зависит от выбранного масштаба модели, для модели блока - 1D из фракционного потока, для обычной модели с ячейками 100x100x1-2 м по результатам адаптации или двухстадийному апскейлингу, для модели керна с ячейками несколько см - керновые из лаборатории.
Автоматическая адаптация - это отдельный разговор. Ее адекватность - предмет для обсуждения. И границы изменения параметров вы контролируете и результат видите, но математика может сыграть злую шутку в маскировании одних эффектов другими...
Признаться, с проблемой предельной обводненности при высоковязких нефтях не сталкивался, хотя то, что обводненность тянется и сроки разработки вырастают неимоверно - да, есть такое.
Меня вот, что во всем этом всегда удивляет. То что абсолютная проницаемость - тензор, это знают все. Но вот фазовую проницаемость за тензор принимают уже не многие, а уж о том, что относительная фазовая так же является тензором, при том более высокого ранга чем абсолютная и фазовая - знают единицы. Теперь, берут модель, производят некоторые действия с кривыми и запихивают их в черный ящик симулятора. При этом, как я понимаю, главное тут - модифицировать, а то, что вдоль каждого направления фильтрации будут свои фазовые про это уже мало кто задумывается. В лучшем случае, что я видел - проведут среднюю линию между парой тройкой экспериментов и скажут, что это есть некая усредненная фазовая.
Это так... размышлизмы в воздух.
О грамотности - ничего личного...
Об автоадаптации - можно опрос отдельно создать - кто чем пользовался, результаты устроили или разочаровали....
to Mike D
вы бы не могли привести сравнение результатов моделей на "неадватных" скалярных и правильных тензорных фазовых? Чтобы оценить за что бороться вдаваясь в такие детали... Эффект от масштабирования знают все - он не требует доказательств... проблема в обосновании процесса
Кстати, при масштабировании с использованием аналитических моделей возникают различия в фазовых в зависимости от направления фильтрации...
to Гоша
Я тоже в общем...
Сделайте тему с опросом! Очень интересно посмотреть! Сейчас это очень модно становится - автоматическая адаптция...
Рекомендую "Решение инженерных задач на ЭВМ", Москва, 1982. Главы "Оптимизация".
Модники епт.
Вы хоть одну практическую задачу решили с помощью этой книги?
Можно пальцем тыкать и в книги Дейка и говорить, что все старо как мир...
Под словом "модно" надо понимать, что сейчас есть возможности как по железу так и в ПО для работы на реальных задачах.
Следуя же вашей логике весь софт с их схемами решения уравнений прошлый век, ибо тогда их и изобрели.
Полностью согласен с первым сообщением и вообще с темой.
Девять из десяти моделей имеют бесконечные хвосты.Здесь ничего не поделаешь.
Или оставляешь честные цифры и столетия или врешь и дорисовываешь в Excel (кто как изгаляется).
Теперь прибавить к этому независимость КИН от сетки скважин и подумать -
А на какой чёрт это всё нужно в проектировании?
Автоматически адаптировал поле проницаемости по забойному/пластовому давлению.
Использовал бесплатную программу UCODE (универсальный решатель обратных задач).
Начинал использование UCODE в обработке КВД, то есть натянуть на фактические замеры модельные точки, получить чувствительность и значимые корридоры проницаемости, что там ещё, толщина вскрытая и пр и др.
Задачу сделал, далее охладел.
Лотерея с цифрами, случайно выпадает комбинация (бинго).
"Чувствительность" и всё остальное о чем говорят в проспектах, это свойство численной модели.
Это не путь получения новой информации о месторождении.
Такое есть мое скромное мнение.
Есть примеры месторождений с высокой вязкостью (50-200 сп) где разработка идет уже почти 100 лет и скважины пробурены с сеткой, э.. 140 метров между скважинами, если взять равномерную плотность. Так там идет тот самый "доотмыв" нефти, хотя справедливости ради надо надо сказать что там еще наблюдается трещиноватость
А вообще одна из причин "хвостов" в обводненности, на мой взляд (и это легко проверить) заключается в том, как мы задаем фазовые. Обычно это уравения Corey, у которых есть такая вещь как экспонента. Такое задание приводит к тому, что во многих случаях последние 10% насыщенности по воде меняются при фазовых по нефти меньше чем 0.01. А теперь скажите, если хоть кто нибудь видел нормальные замеры/данные для таких высоких насыщенностей. Это потребовало бы насыщение образцов вязкой нефтью и оооочееень долгий эксперимент в лаборатории. Т.е. мы сами задаем такое поведение, а потом сетуем на неадекватность модели
Для тех у кого проблемы с "длинными хвостами" попробуйте задать фазовые прямыми линиями, хотя бы для насыщенности > 50%.
Все так и есть )
В трещинах так и задаем прямыми (для всей насыщенности) - получаем (что и требуется) молниеносное обводнение.
У вас молниеносное обводнение наступает не сколько за счет "палочных" фазовых, а за счет малой емкости трещин. Просто нет больше нефти.
Если плевать на запасы, то любую динамику обводнения можно имитировать пористостью и соотношением проницаемостей.
Надо медленее обводняться? Увеличьте запасы. Обводнение ускорить? Уменьшите запасы.
Вы попробуйте в ваши трещины перенести 99% запасов и покажите куда денется молниеносное обводнение. Конечно проверяли и "палки" и варьировали степенной показатель -
Поршень не обманешь !
Как раз столкнулся с этой проблемой.
Псевдо на тестовой задаче почему-то так и не захотел нормально работать. Пришлось использовать Enable. Но понимания получаемых фазовых поа не приходит. Посоветуйте пожалуйста что почитать на эту тему. Желательно со ссылками
Вообще поможет теория Баклея-Леверетта, но она трудновата для чтения и вывода. На днях дадут программу написаную студентами решающую задачу БЛ для галереи. Я полагаю поиграв с ней *закладывая ФП и получая движение фронта вытеснения во времени и пространстве* можно лучше понять суть ФП. И также мне кажется что подобные программы уже есть у присутствующих здесь товарищей.
Порой даже самую сложную теорию легче понимать на практике и потом возвратится на этап вывода.